TEACHING MODULES INFORMATION EMJMD WACOMA (academic year 2020/21)

1.	Module Title:
	Modeling physical-biological processes
2.	Module Code:
	(not necessary yet)
3.	Maximum Number of Students:
	22
1	
4.	2 ECTS
5	2 LC15
5.	Mar Jup
6.	Notional Learning Hours (Please fill a number in box):
	(a) Contact Time - e.g in the classroom, or fieldwork
	(b) Private Study - reading time, preparing and taking assessments
	Format of Teaching.
	Lootures 0 Hours (a)
	Laboratories or Practicals 6 Hours
	Other (computer workshops) Hours
	Other (tutorials) Hours
	Teaching Strategy:
	Students will be introduced to numerical models used for studies on ocean
	circulation at global and regional scales, as well as to the main ecosystem modelling
	systems.
7.	Convener:
	Ana Machado
0	
8.	Institution:
	University of Lisbon
0	
9.	Level (Please tick Y): Mostor
	Master
10.	Language(s) of Tuition [.]
	English
11.	Pre-requisites:
	Students should have a basic knowledge background on numerical modelling, ocean
	currents and marine ecosystems.
12.	Co-requisites:
	None

13.	Programme(s) for which module is core: Erasmus Mundus Joint Master Degree in Water and Coastal Management (WACOMA)
14.	 Module Description - The Purpose or Aims: The main objectives of this course are to teach students the basic principles of Ocean circulation numerical modelling Biogeochemical modelling Physical-biological coupled models Lagrangian Transport models
15.	Learning Outcomes: At the end of this module students should know the different types of ocean models available, understand their differences and be able to identify an appropriate numerical model for a particular problem.
16.	 Summary of Course Content: Introduction to ocean circulation models: Earth system models (ESM) Oceanic General Circulation Models (OGCM) Regional Ocean Models Coastal Ocean Models Introduction to the modelling of marine ecosystems: Chemical-biological processes Simple plankton models for the ocean: the NPZD Fasham model Complex ecosystem models: The Biogeochemical Flux Model (BFM) Physical-biological coupled models
17.	Key Skills Taught: - Ocean circulation models - Ecosystem models - Physical-biological coupled models
18.	Assessment Methods: Written exam on the contents shown during the lessons.

19.	Assessment Criteria:
	A successful candidate should have or be able to do the following:
	Threshold
	A basic understanding of the appropriate science and modelling approach and a reasonable understanding of the model results and their implications.
	Good
	A good understanding of the science and correct model results which are presented and interpreted to a good standard, with some reference to independent literature data and results.
	Excellent
	A good to excellent understanding of the science and correct model results which are presented and interpreted to a high standard, with plenty of references used for comparisons and to critically evaluate the results.
20.	Resource Implications of Proposal and Proposed Solutions:
	Core texts
	Cushman-Roisin, B., Beckers, J.M. (2012). Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. Academic Press, Amsterdam, 828 pp.
	Fasham, M.J R.; Ducklow, H.W.; McKelvie, S.M. (1990). A nitrogen-based model of plankton dynamics in the oceanic mixed layer. Journal of Marine Research, 48(3), pp. 591-639.
	Fennel, W., Neumann, T. (2015). Introduction to the Modelling of Marine Ecosystems, Volume 72, 372 pp. Elsevier Science Eds. eBook ISBN: 9780444634153, Hardcover ISBN: 9780444633637
	Shchepetkin, A.F., McWilliams, J.C. (2005). The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9, 347–404, http://dx.doi.org/10.1016/j.ocemod. 2004.08.002.
	Specific Descurses Implications for Students
	specific Resource implications for Students:
21.	Does this module replace existing provision? If so, please indicate
	modules to be replaced: The module fits in the area of: "Environmental Impacts and Management"
22.	Start Date:
	First year, second semester

23.	Is it intended that the module be available every year?
	Yes